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C U F W 3 "  CONFIGURATIONS 

By W i l l i a m  D. Grantham and Sue B. Grafton 
Langley Research Center 

SUMMARY 

An ana ly t i ca l  study has been conducted on a high-speed d i g i t a l  computer 
u t i l i z i n g  six-degree-of-freedom equations of motion t o  examine t h e  e f f e c t s  of 
r e l a t i v e  densi ty  on t h e  sp in  and recovery cha rac t e r i s t i c s  of four  configura- 
t i o n s  which are representat ive of modern a i rp lanes .  Two approaches were used: 
Computations w e r e  made simulating conditions f o r  which t h e  a i rp lane  obtained a 
disturbance t h a t  put it at  a high angle of a t t ack  with applied ro t a t ion  i n  a 
near-developed spin condition at  various i n i t i a l  a l t i t u d e s  t o  determine whether 
a developed sp in  would ensue. After it w a s  determined t h a t  developed spins  d id  
ensue i n  t h e  first group of calculations,  separate calculat ions were made t o  
determine whether a sp in  could be entered starting at  o r  near trimmed g l id ing  
f l i g h t  (1 g stall maneuvers). 

The r e s u l t s  i nd ica t e  t h a t  t h e  e f f e c t s  of changing r e l a t i v e  densi ty  on 
developed spins  and recoveries were as follows: 
gave faster ro ta t ing  spins, higher r a t e s  of descent, lower values of t h e  sp in  
coeff ic ient ,  l i t t l e  change i n  angles of a t tack  and s ides l ip ,  and recoveries, i f  
obtained, were slower. Changes i n  r e l a t i v e  densi ty  can make t h e  difference 
between a spin and a no-spin when en t ry  i s  attempted by means of a l g  s ta l l  
maneuver, but t h e  e f f e c t  of r e l a t i v e  densi ty  i s  not consis tent .  About t h e  only 
general izat ion t h a t  can be made on t h e  e f fec t  of r e l a t i v e  densi ty  on t h e  sp in  
en t ry  i s  t h a t  increases  i n  r e l a t i v e  densi ty  cause increased r o l l  o s c i l l a t i o n s  
during t h e  spin-entry motions. 

An increase i n  r e l a t i v e  densi ty  

INTRODUCTION 

Reference 1 descr ibes  t h e  r e s u l t s  of model tests made more than 20 years 
ago i n  t h e  Langley 20-foot free-spinning tunnel  t o  determine t h e  e f f e c t s  of 
relative densi ty  on spin and recovery cha rac t e r i s t i c s  of a i rplanes.  
study, t h e  range of re la t ive-densi ty  parameters used w a s  6 t o  12. Over t h e  
ensuing years, a i rplane configurations have changed considerably and t h e  range 
of values of r e l a t i v e  densi ty  has g r e a t l y  increased. An ana ly t i ca l  study has, 
therefore ,  been made t o  examine t h e  e f f e c t s  of r e l a t i v e  densi ty  on spinning f o r  

I n  t h a t  



f o u r  more recent configurations, and t h e  r e s u l t s  a r e  reported herein.  I n  t h i s  
study t h e  range of re la t ive-densi ty  parameters covered w a s  from 17 t o  487. 
present paper a l s o  includes consideration of spin-entry charac te r i s t ics ,  whereas 
reference 1 w a s  concerned only with f i l l y  developed spins and recoveries 
therefrom. 

The 

The four  configurations used i n  t h i s  study were considered t o  be representa- 
t i v e  of modern a i r c r a f t  and were as follows: 
sweptback w i n g  f igh ter ,  a delta-wing bomber, and a delta-wing f i g h t e r .  The 
relat ive-densi ty  parameter w a s  considered t o  be var ied by changing a l t i t u d e .  
Included i n  t h e  study were br ie f  calculat ions t o  determine t h e  e f f e c t  of varying 
t h e  magnitude of some of t h e  aerodynamic parameters f o r  various simulated 
a l t i t u d e s .  

a stub-wing research vehicle, a 

SYMBOLS 

The body system of axes i s  used. This system of axes, re la ted  angles, and 
pos i t ive  d i rec t ions  of corresponding forces  and moments a r e  i l l u s t r a t e d  i n  
f igure  1. 

b wing span, f t  

c2 

Cm 

MX 
1 2  -pV Sb 

rolling-moment coeff ic ient ,  

2 R  

pitching-moment coeff ic ient ,  YT 
1 2  -pv SE 2 R  

yawing-moment coeff ic ient ,  Mz 

longitudinal-force coeff ic ient ,  FX 

1 2  Cn 
F V R  Sb 

CX 
+**s 

FY side-force coeff ic ient ,  
1 CY 
FVR2S 

FZ 
SPVR s 1 2  

CZ vert ical-force coeff ic ient ,  

- 
C mean aerodynamic chord, f t  

FX longi tudinal  force  act ing along X body axis, l b  
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FY s ide  force  act ing along Y body axis, lb 

FZ v e r t i c a l  force  act ing along Z body axis, lb 

g accelerat ion due t o  gravity,  f t /sec* 

go accelerat ion due t o  grav i ty  at sea level ,  32.17 f t / sec2  

a l t i t u d e  a t  beginning of t i m e  increment, f t  hO 

hl a l t i t u d e  at end of time increment, f t  

Ix,Iy,Iz moments of i n e r t i a  about X, Y, and Z body axes, respectively,  - 
slug-ftZ 

ro l l i ng  moment ac t ing  about X body axis, f t - l b  

pi tching moment act ing about Y body axis, f t - l b  

yawing moment act ing about Z body axis, f t - l b  

m a s s  of airplane,  W/g, slugs 

components of resu l tan t  angular ve loc i ty  about X, Y, and Z body 
axes , respectively,  radianslsec 

radius of earth,  3,956.67 miles 

wing-surface area, sq f t  

time, sec 

components of resu l tan t  ve loc i ty  VR along X, Y, and Z body axes, 
respectively,  f t / s e c  

v e r t i c a l  component of ve loc i ty  of a i rplane center  of grav i ty  ( r a t e  of 
descent ) , f t / s e c  

resu l tan t  l i n e a r  velocity,  f t / s ec  

weight, l b  

longitudinal,  lateral ,  and v e r t i c a l  body axes of airplane,  - 
respect ively 

angle of attack, angle between r e l a t i v e  wind VR projected i n t o  
XZ-plane of symmetry and X body axis, pos i t ive  when r e l a t ive  wind 
comes from below XY body plane, deg 
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P 

‘a 

‘e 

‘r 

e e  

P 

angle of s ides l ip ,  angle between r e l a t i v e  wind VR and project ion 
of r e l a t i v e  wind on =-plane, pos i t ive  when r e l a t i v e  wind comes 
from r i g h t  of plane of symmetry, deg 

t o t a l  def lec t ion  of l e f t  and r i g h t  a i le rons  with respect t o  each 
other, pos i t ive  with t r a i l i n g  edge of r i g h t  a i le ron  down ( l e f t  
s t i c k ) ,  deg 

elevator  def lec t ion  with respect t o  fuselage reference l ine,  pos i t ive  
with t r a i l i n g  edge down, deg 

rudder def lec t ion  with respect t o  f i n ,  pos i t ive  with t r a i l i n g  edge 
t o  l e f t ,  deg 

t o t a l  angular movement of X body axis from horizontal  plane meas- 
ured i n  v e r t i c a l  plane, pos i t ive  when airplane nose i s  above hori-  
zontal  plane, deg 

W 
gpfl, 

a i rplane relat ive-densi ty  parameter, - 

air density, slugs/cu f t  

r e  sult ant  angular velocity,  radians / s e c 

angle between Y body axis  and horizontal  measured i n  v e r t i c a l  plane, 
pos i t ive  f o r  e rec t  spins when r i g h t  wing i s  downward and f o r  
inverted spins when l e f t  wing i s  downward, deg 

t o t a l  angular movement of Y body axis from horizontal  plane measured 
i n  YZ body plane, pos i t ive  when clockwise as viewed from r e a r  of 
airplane ( i f  X body axis is  v e r t i c a l ,  $e i s  measured from a 

reference pos i t ion  i n  horizontal  plane),  deg 

horizontal  component of t o t a l  angular def lec t ion  of X body axis  from 
reference pos i t ion  i n  horizontal  plane, pos i t ive  when clockwise as 
viewed from v e r t i c a l l y  above airplane,  deg 

incremental rolllng-moment coeff ic ient  due t o  a i le ron  deflection, per 
deg 

incremental rolling-moment coeff ic ient  due t o  rudder deflection, per 
deg 

incremental yawing-moment coef f ic ien t  due t o  a i le ron  deflection, per 
deg 

incremental yawing-moment coeff ic ient  due t o  rudder deflection, per 
deg 
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incremental side-force coef f ic ien t  due t o  a i l e ron  def lect ion,  pe r  deg eysa 

incremental side-force coef f ic ien t  due t o  rudder def lect ion,  pe r  deg cysr 

A dot over a symbol represents  a der iva t ive  w i t h  respect t o  t i m e .  

PROCEDURES AND CALCULATIONS 

Spin en t ry  and developed spin motions w e r e  calculated by a high-speed 
d i g i t a l  computer which solved t h e  equations of motion and associated formulas 
l i s t e d  i n  t h e  appendix. The equations of motion are f i l e r ’ s  equations repre- 
senting s i x  degrees of freedom along and about t h e  a i rp lane  body system of axes. 
(See f i g .  1 f o r  i l l u s t r a t i o n  of body axes.) The m a s s  and dimensional character-  
i s t i c s  used i n  the  calculat ions are l i s t e d  i n  table I and t h e  planviews of t h e  
four  configurations designated A, B, C, and D a re  shown i n  f i g u r e  2. 

I n  general, t h e  aerodynamic da ta  used were nonlinear as shown i n  figures 3 
N o  meas- t o  8. 

ured values of t h e  lateral  force  increments r e su l t i ng  from def lec t ing  t h e  a i l e r -  
ons and rudder were ava i lab le  f o r  coni‘iguration B. (See f i g s .  5 and 6. )  Inasmuch 
as previous s tud ies  have indicated t h a t  these incremental forces  have l i t t l e  or  no 
e f fec t  on sp in  en t ry  and sp in  cha rac t e r i s t i c s  no attempt w a s  m a d e  t o  estimate them 

The da ta  f o r  these  p l o t s  were obtained from references 2 t o  7. 
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I IIIIIIII 

The osci l la t ion-type ro ta ry  der iva t ives  presented i n  f igures  7 and 8 were 
b - t h a t  is, obtained as combination der iva t ives  which include t h e  e f f e c t s  of 

C 2P i s  ac tua l ly  (czP + ~ 2 ;  s i n  u), 

i s  ac tua l ly  (Czr  - C z B  COS a), Cnr i s  ac tua l ly  (Cnr - Crib COS a), and so  

f o r t h .  However, inasmuch as t h e  f u l l  der iva t ives  could not be separated i n t o  
t h e i r  component par t s ,  it w a s  a r b i t r a r i l y  decided f o r  t h i s  study t o  t r e a t  t he  
der iva t ives  as though they were due so le ly  t o  angular ve loc i t i e s  about body 
axes. The r o l l i n g  moment due t o  yawing C z r  and the  yawing moment due t o  

r o l l i n g  

all configurations, no e f f e c t s  of r o l l i n g  and yawing on s ide  force  were included. 
I n  addition, constant values of 

lows : Configuration A, = -10; configurations B and C, Cas  = -2; and con- 

f igu ra t ion  D, Cm = -1. 

i s  ac tua l ly  ("np + Cnfi s i n  OL)) cZr 

parameters were s e t  equal t o  zero f o r  configurations A and B. For  cnp 

Cmq were used f o r  each configuration as fo l -  

q 

Two approaches were used: Computations were made s i m u l a t i n g  conditions 
f o r  which t h e  airplane obtained a disturbance t h a t  put it at  a high angle of 
a t t ack  with applied ro t a t ion  i n  a near-developed sp in  condition a t  each alt i-  
tude ( t h a t  i s  ho = l 5 , O O O  f ee t ,  3O,OOO f ee t ,  45,000 f ee t ,  and 60,000 f e e t )  t o  
determine whether a developed sp in  would ensue. This technique simulated tha t  
used i n  t h e  Langley 20-foot free-spinning tunnel  i n  which s m a l l  dynamic models 
a re  Launched i n  near-developed spin conditions and then f r e e l y  proceed t o  e i t h e r  
developed spins  o r  t o  "no-spin" dive-out o r  rol l -over  motions, depending upon 
t h e  design and m a s s  cha rac t e r i s t i c s .  After it w a s  determined t h a t  developed 
spins  d id  ensue i n  t h e  f i r s t  group of calculat ions,  separate calculat ions were 
made t o  determine whether a spin could be entered s t a r t i n g  at  o r  near t r i m e d  
g l id ing  f l i g h t  (1 g s t a l l  maneuver). 

Spin recovery attempts were made by def lec t ing  t h e  rudder against  t h e  
d i r ec t ion  of yaw and t h e  a i le rons  with the  d i r ec t ion  of yaw ( l e f t  rudder and 
r igh t  s t i c k  when spinning t o  the  p i l o t ' s  r i gh t ) ,  because these  control  deflec- 
t i o n s  a re  t h e  optimum f o r  recovery from developed spins f o r  a i rplanes loaded 
heavily along t he  fuselage (see r e f .  8), as a r e  t h e  subject configurations.  
e leva tors  were l e f t  i n  t h e  i n i t i a l  up pos i t ion  f o r  a l l  cases. During the  present 
study, a spin i s  considered t o  be terminated when e i t h e r  t h e  spin-rotat ion ceases 
o r  t h e  angle of a t tack  becomes and remains less than t h e  s t a l l  angle within 10 
tu rns  a f t e r  t h e  recovery controls  a r e  applied.  Usually when the  angle of a t tack  
becomes l e s s  than t h e  stall  angle, t h e  a i rp lane  en ters  a s teep  dive without 
s ign i f i can t  ro t a t ion  ( r  = 0) .  I n  some cases, however, t h e  a i rp lane  may be 
turning o r  r o l l i n g  i n  a s p i r a l  g l ide  o r  an a i l e ron  r o l l .  Also, sometimes the  
airplane may r o l l  or pi tch  t o  an inverted a t t i t u d e  from the  e rec t  spin and may 
s t i l l  have some ro ta t ion ,  but it i s  out of t h e  o r i g i n a l  e r ec t  spin.  

The 
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RESULTS AND DISCUSSION 

The calculated r e s u l t s  are presented i n  f igu res  9 t o  16 as t i m e  h i s t o r i e s  
of angle of a t t ack  a, angle of p i t ch  Oe, angle of s i d e s l i p  j3, angle of roll 
fie, yawing ve loc i ty  
It should be noted t h a t  t h e  sca les  on these  f igures  are not consis tent  and t h e  
reader should be carefu l  when t ry ing  t o  compare various t i m e  h i s t o r i e s .  Also, 
it may be noted t h a t  attempted recoveries are indicated by dashed l ines ,  spins  
by s o l i d  l i n e s .  

r, control-surface posit ions,  and sp in  tu rns  completed. 

Simulated Launching With Rotary Motion 

Elevator up, rudder right, and s t i c k  l e f t  conditions were used i n  each cal-  
cu la t ion  t o  promote a sp in  t o  t h e  p i l o t ' s  r i gh t .  
used at each r e l a t i v e  densi ty  invest igated are presented i n  t a b l e  11. 

The i n i t i a l  f l i g h t  conditions 

The calculated r e s u l t s  f o r  all configurations showed t h a t  developed spins 
ensued from launchings a t  all four  a l t i tudes ;  t he  magnitudes of t h e  per t inent  
parameters are presented i n  t a b l e  111. 

Configuration A.- Two representat ive time h i s t o r i e s  f o r  configuration A 
are presented as f igu re  9. 
at  15,000 f e e t  (p = 73) and indica tes  t h a t  after approximately 10 tu rns  a 
developed sp in  condition had been achieved. The angle of a t t ack  w a s  o sc i l -  
l a t i n g  from approximately 84O t o  89O, t h e  angle of s i d e s l i p  w a s  o s c i l l a t i n g  
from lo t o  -80, and t h e  rate of yaw w a s  approximately 2.8 radians pe r  second. 
This i s  t h e  point  at  which t h e  recovery attempt w a s  made, and as seen i n  f ig -  
ure  9(a) no recovery w a s  achieved within 10 addi t iona l  tu rns .  
represents  t he  sp in  obtained by s t a r t i n g  a t  60,000 f e e t  (p = 487) and shows 
t h a t  a f t e r  approximately 10 tu rns  
r = 3.1 radians pe r  second. A recovery w a s  attempted at  t h a t  point  and, as 
shown, none w a s  achieved within 10 addi t iona l  tu rns .  

Figure g(a)  represents t h e  motion obtained s t a r t i n g  

Figure g(b) 

a = 8 5 O  t o  88O, p = 0' t o  -bo, and 

The r e s u l t s  obtained f o r  t h i s  configuration ind ica te  t h a t  an increase i n  

The s m a l l  changes 
t h e  re la t ive densi ty  gave s l i g h t l y  faster ro t a t ing  spins, higher rates of 
descent, and lower values of t h e  sp in  coef f ic ien t  
i n  angle of a t t ack  and s i d e s l i p  are negl igible .  

Slb/2VR. 

Configuration B.- Two representat ive t i m e  h i s t o r i e s  of t h e  sp in  and recov- 
e ry  motions obtained f o r  configuration B are presented as f igu re  10. 

Per t inent  results from these  calculat ions ind ica t e  t h a t  when t h i s  configu- 
r a t i o n  w a s  launched i n t o  a near-spin condition, an increase i n  t h e  r e l a t i v e  
dens i ty  gave faster ro t a t ing  spins, higher rates of descent, lower values of 
t h e  sp in  coeff ic ient ,  and slower recoveries.  The e f f e c t  of r e l a t i v e  densi ty  
va r i a t ions  on t h e  angles of a t t ack  and s i d e s l i p  experienced during these  four  
spins  w a s  again considered t o  be negl ig ib le .  (See t a b l e  111.) 
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Configuration- C.- Spins were obtained at  all four  a l t i t u d e s  f o r  configu- 
r a t i o n  Cy from which no recoveries were achieved. 
h i s t o r i e s  are presented as f i g u r e  11. 

Two representat ive time 

The results (table 111) indica te  tha t ,  as i n  t h e  case of configurations A 
and B already discussed, when t h i s  configuration w a s  launched i n t o  a near-spin 
condition, an increase i n  t h e  r e l a t i v e  densi ty  gave s l i g h t l y  faster ro t a t ing  
spins, higher rates of descent, and lower values of t h e  sp in  coeff ic ient ;  how- 
ever, t he re  w a s  l i t t l e  change i n  t h e  angles of a t t ack  and s ides l ip .  

Configuration-D.- The calculated t i m e  h i s t o r i e s  f o r  configuration D show 
t h a t  recoveries were achieved from each spin.  Two representat ive t i m e  h i s t o r i e s  
of t h e  sp in  and recovery are presented as f i g u r e  12. 

The r e s u l t s  shown i n  table I11 i nd ica t e  tha t ,  as i n  t h e  case of t h e  con- 
f igu ra t ions  already discussed, when t h i s  configuration w a s  launched i n t o  a near- 
sp in  condition, an increase i n  t h e  r e l a t i v e  densi ty  gave faster ro ta t ing  spins, 
higher rates of descent, lower values of t h e  sp in  coef f ic ien t ,  and slower 
recoveries.  The s m a l l  changes i n  angles of a t t ack  and s i d e s l i p  were again con- 
s idered t o  be negl ig ib le .  

Summation of regults f o r  lgunc&Ang_s_'th ro t a ry  motion.- It w a s  concluded 
from t h e  r e s u l t s  discussed thus  far t h a t  developed spins  ensued f o r  a l l  con- 
f igura t ions  and i n i t i a l  conditions studied, and t h a t  t h e  e f f e c t s  of var ia t ions  
i n  r e l a t i v e  densi ty  were s i m i l a r  on a l l  of t h e  configurations; t h a t  is, an 
increase i n  r e l a t i v e  densi ty  gave faster ro t a t ing  spins, higher rates of descent, 
lower values of t h e  sp in  coeff ic ient ,  l i t t l e  change i n  angle of a t tack  and side- 
s l i p ,  and recoveries, i f  obtained, were slower. These r e s u l t s  are considered 
t o  be i n  general  agreement with those of reference 1; except t h a t  i n  t h e  former 
study, somewhat l a r g e r  e f f e c t s  of r e l a t i v e  densi ty  on angle of a t tack  and side- 
s l i p  appeared t o  be indicated.  

Simulated Spin Entry Motion 

After it w a s  found tha t ,  once achieved, developed spins  could be maintained 
f o r  a l l  Gases investigated,  attempts were made f o r  each configuration t o  en ter  
t h e  sp in  s t a r t i n g  at o r  near trimmed g l id ing  f l i g h t  and f ly ing  t h e  a i rp lane  up 
through t h e  s ta l l  angle of a t t ack  (1 g s ta l l  maneuver). Back s t i c k  w a s  used t o  
s ta l l  t h e  c ra f t ,  r i g h t  rudder w a s  applied at o r  j u s t  after t h e  s ta l l  to yaw the  
craft t o  the  r igh t ,  and l e f t  s t i c k  w a s  applied var iously timed, t o  a t t empt ' t o  
promote spin e n t r i e s  t o  t h e  r igh t  i n  a l l  calculat ions.  Calculations were made 
t h a t  simulated i n i t i a l  a l t i t u d e s  of 15,000, 3O,OOO, 45,000 and 60,000 f e e t  f o r  
each of t h e  four  configurations, as w a s  done f o r  t h e  computations where each 
c r a f t  w a s  launched with applied ro ta t ion .  I n i t i a l  conditions used are shown i n  
t h e  second pa r t  of t a b l e  11. 

Configuration A.- The calculated t i m e  h i s t o r i e s  f o r  configuration A a re  
presented as figure 13, and, as can be seen, spins  were obtained a t  a l l  fou r  
a l t i t u d e s .  
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Ccmparison of t h e  spins  at  four  altitudes ( f i g .  13) indica tes  t h a t  t h e  only 
noticeable e f f e c t  of change i n  r e l a t i v e  densi ty  on t h e  sp in  en t ry  character is-  
t i c s  i s  t h a t  as t h e  r e l a t i v e  densi ty  i s  increased the  r o l l  angles experienced 
during t h e  i n i t i a l  phases of t h e  sp in  en t ry  a r e  l a r g e r  and t h a t  t h e  ensuing 
r o l l i n g  and pi tching motions were more osc i l l a to ry .  After approximately f i v e  
spinning turns,  t h e  sp in  motions achieved a t  t h e  various a l t i t u d e s  are s i m i l a r .  

Recoveries w e r e  attempted from each of these  spins  after seven spinning 
tu rns  had been completed from i n i t i a l  l g  stall entry and, as can be seen from 
t h e  respect ive time h i s to r i e s ,  it took approximately 6 t o  7 addi t iona l  t u rns  t o  
achieve recovery i n  each instance.  It i s  believed t h a t  t h e  reason recoveries, 
even though poor, were possible  from these  spins  whereas, as previously dis-  
cussed, they w e r e  not obtained from t h e  spins  which ensued a f t e r  t h i s  configura- 
t i o n  w a s  launched i n  a near-spin condition i s  t h a t  i n  t h e  second group of cal-  
culations,  t h e  recovery controls  were applied before t h e  spin-rotat ion rates had 
increased t o  t h e  magnitudes experienced i n  t h e  first group of calculat ions.  The 
lower ro t a t ion  rates enabled recoveries, even though poor, t o  be achieved. 

Configuration B.: The computed time h i s t o r i e s  f o r  configuration B a re  pre- 
sented i n  f igu re  14. The cha rac t e r i s t i c s  of motions obtained i n  t h e  attempted 
sp in  e n t r i e s  were very d i f f e ren t  f o r  t h e  d i f f e ren t  a l t i t udes ,  but t he re  w a s  no 
consis tent  t rend  i n  t h e  r e s u l t s .  For example, when a sp in  entry w a s  attempted 
a t  an a l t i t u d e  of 15,000 f e e t  ( f i g .  14 (a ) ) ,  t h e  c r a f t  ro l l ed  over t o  t h e  r igh t  
($e > 3600) and then continued t o  o s c i l l a t e  i n  r o l l  t o  such an extent t h a t  no 
sp in  w a s  obtained; whereas, f o r  an i n i t i a l  a l t i t u d e  of 30,000 feet ( f i g .  14(b)), 
t h e  c r a f t  ro l l ed  over t o  t h e  right, maintained an angle of a t t ack  above t h e  
s ta l l  angle, began t o  o s c i l l a t e  approximately EL5* i n  r o l l ,  and continued t o  
sp in .  
i n i t i a l  a l t i t u d e  of 45,000 feet, shows t h a t  t h e  c r a f t  ro l l ed  over t o  t h e  right 
twice ($e > 7000) and then continued t o  r o l l  u n t i l  such time as t h e  angle of 
a t t ack  became l e s s  than zero. The d i r ec t ion  of turning w a s  s t ead i ly  changing 
and therefore  could not be ca l led  a spin.  When a spin entry w a s  attempted by 
using an i n i t i a l  a l t i t u d e  of 60,000 f e e t  ( f i g .  14(d)), t h e  c r a f t  ro l l ed  over t o  
t h e  r i g h t  twice and began t o  o s c i l l a t e  from approximately -50° t o  TO0 i n  r o l l  
angle and made th ree  spinning tu rns  t o  t h e  r igh t  before it o s c i l l a t e d  out of 
t h e  spin.  The angle of a t t ack  became l e s s  than zero and t h e  rate of yaw w a s  
approachhg zero when t h e  computation w a s  stopped. N o  recovery w a s  attempted 
from t h e  only spin obtained (i.e.,  a t  

The t i m e  h i s to ry  shown i n  f igu re  14(c) ,  which w a s  computed by using an 

ho = 30,000 feet) .  

Configuration C.- The time h i s t o r i e s  f o r  configuration C a r e  presented i n  
f i g u r e 1 5  and, as can be seen, spins  were entered at  each a l t i t u d e .  Again, as 
i n  t h e  spins  entered with configuration A, t h e  computed r o l l i n g  and pi tching 
motions w e r e  more o s c i l l a t o r y  f o r  t h e  higher values of r e l a t i v e  densi ty .  

Recoveries were attempted from these  sp ins  after seven tu rns  had been com- 
p le ted  w i t h  t h e  following r e su l t s :  (1) no recovery w a s  achieved from the sp in  
at  15,000 feet, (2)  recovery w a s  achieved from t h e  sp in  at  30,000 f e e t  i n  
approximately two addi t iona l  turns ,  (3) l e s s  than one addi t iona l  t u r n  w a s  
required t o  achieve recovery from t h e  sp in  a t  45,000 feet. 
t o  l5 (c ) ,  respect ively.)  
an i n i t i a l  a l t i t u d e  of 60,000 feet .  

(See f i g s .  l5(a)  
N o  recovery w a s  attempted from t h e  sp in  obtained at  

Apparently, t h e  primary reason t h a t  
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recoveries were obtained a t  t h e  higher a l t i t u d e s  and not at 15,000 f e e t  i s  t h a t  
a t  t h e  higher a l t i t u d e s  t h e  sp in  motions were more o s c i l l a t o r y  and t h e  ro t a t ion  
r a t e s  slower. This i s  a l s o  t h e  probable reason why no recoveries were achieved 
from t h e  sp in  obtained by launching t h e  c r a f t  with applied ro t a t ion  ( t ab le  111); 
those spins  were more steady i n  nature and yawing a t  a somewhat f a s t e r  r a t e  when 
recovery controls  were applied.  (Compare f i g .  11 with f i g .  15.) 

Configuration-D.- The calculated time h i s t o r i e s  f o r  configuration D a r e  
presented i n  f igu re  16. It i s  shown t h a t  spins  were entered a t  each a l t i t u d e  
invest igated except at 60,000 feet, wherein t h e  c r a f t  ro l l ed  t o  such an extent 
t h a t  a sp in  en t ry  w a s  prevented. No recoveries were attempted f o r  any condi- 
t i on .  About t h e  only general izat ion t h a t  can be made about t h e  r e s u l t s  f o r  
configuration D i s  t h a t  as t h e  r e l a t i v e  densi ty  w a s  increased the  amount of r o l l  
experienced increased. 

Summation of r e s u l t s  of spin gnt ry  call.1ations.- It i s  concluded from 
these  calculat ions t h a t  t h e r e  i s  no cons is ten t  e f f e c t  of r e l a t i v e  densi ty  on 
whether a n  a i rp lane  has more o r  less tendency t o  en te r  a spin.  About t he  only 
general izat ion t h a t  can be drawn from t h e  r e s u l t s  of t h e  spin en t ry  calculat ions 
i s  t h a t  increasing r e l a t i v e  densi ty  causes l a r g e r  rol l -angle  osc i l l a t ions  i n  the  
i n i t i a l  phases of t h e  spin-entry attempt. Apparently, changes i n  r e l a t i v e  
density can a f f e c t  t h e  r o l l  cha rac t e r i s t i c s  t o  such an extent t h a t  spins  may o r  
may not be obtained from a l g  s ta l l  maneuver f o r  configurations and conditions, 
all of which would sp in  when launched with spinning ro ta t ion .  For example, f o r  
two of t h e  subject  configurations, spins  could be entered over t h e  complete 
range of r e l a t i v e  dens i ty  investigated; f o r  t h e  t h i r d  configuration, spins  could 
be entered at a l l  r e l a t i v e  dens i t i e s  except t h e  m a x i m u m  studied. For t h e  four th  
Configuration, spins  could be entered a t  a medium value of r e l a t i v e  densi ty  
( c r a f t  ro l l ed  over t o  t h e  r igh t  once, began t o  o s c i l l a t e  Ll5O and continued 
spinning), but when t h e  r e l a t i v e  densi ty  w a s  appreciably decreased o r  increased, 
no spin could be entered ( r o l l i n g  d id  not s top a f t e r  i n i t i a l  r o l l  over).  

It appears t h a t  i n  order t o  pred ic t  t h e  e f f e c t  of changing r e l a t i v e  density 
on spin-entry cha rac t e r i s t i c s  f o r  any p a r t i c u l a r  configuration, a n  investiga- 
t i o n  must be made on t h e  spec i f i c  design. 

AERODYNAMIC VARIATIONS 

Inasmuch as it w a s  found t h a t  there  were some a l t i t u d e s  a t  which some con- 
f igura t ions  would not en te r  a spin by means of a l g  s t a l l  maneuver, and t h a t  
t h e  roll-motion cha rac t e r i s t i c s  were very important i n  determining whether a 
spin could be entered, a few calculat ions were made t o  determine whether l a rge  
increases  i n  t h e  values of C z P  and Czp ( a r b i t r a r y  values used were twice the  

bas ic  values) would enable spins  t o  be entered a t  these  a l t i t u d e s .  

A s  mentioned previously, spins on configuration D were entered a t  a l l  a l t i -  
tudes except t h e  maximum (60,000 f e e t ) .  
wherein t h e  bas ic  values of C l P  and c2p were a r b i t r a r i l y  increased by 

Additional calculat ions were made 

10 



various amounts i n  an attempt t o  en ter  a spin a t  a simulated a l t i t u d e  of 
60,000 f e e t  with t h i s  configuration. 
increasing t h e  negative values of 

whereas t h e  l a r g e r  negative values of 

allowed a spin entry.  These e f f e c t s  a r e  i n  agreement with t h e  r e s u l t s  obtained 
during previous a n a l y t i c a l  s tud ies  of t h e  spin charac te r i s t ics  of other  d e l t a  
wing configurations and indicated t h a t  t h e  magnitude of C z p  had l i t t l e  e f f e c t  

on t h e  i n i t i a l  phases of the  spin entry, although t h e  magnitude of C z p  can 

a f f e c t  t h e  spin a f t e r  it has developed. Also, as t o  the  e f f e c t s  of C z p  on 
spin entr ies ,  it has been pointed out i n  references 3 and 9 tha t  t h e  magnitude 
of C z P  

The resu l t ing  time h i s t o r i e s  showed tha t  
did not enable a spin t o  be entered, CzP 

( increased e f f e c t i v e  dihedral)  c z P  

can determine whether an a i r c r a f t  can en ter  a spin. 

A s  discussed previously, spins could be entered on configuration B a t  an 
a l t i t u d e  of 30,000 f e e t ,  but i f  t h e  a l t i t u d e  w a s  reduced t o  15,000 feet o r  
increased t o  45,000 and 60,000 fee t ,  no spins could be entered. 
t i o n s  were made wherein t h e  bas ic  values of CzP  and C z P  were a r b i t r a r i l y  

increased by various amounts i n  a n  attempt t o  en ter  spins a t  15,000 f e e t  and 
60,000 f e e t .  
indicated t h a t  increasing t h e  bas ic  negative values of C z p  o r  C z p  s t i l l  

would not enable a spin t o  be entered. However, when t h e  increased negative 
values of both C z P  and C z P  were used, t h e  c r a f t  did en ter  a spin.  The 
r e s u l t s  a t  60,000 f e e t  showed t h a t  when l a r g e r  negative values of 

C z p  were used, spins could not be entered. 

Some calcula- 

The t i m e  h i s t o r i e s  computed f o r  an i n i t i a l  a l t i t u d e  of 15,000 f e e t  

and/or 
c2P 

These r e s u l t s  ind ica te  t h a t  even when r e l a t i v e l y  la rge  negative values of 
and/or a re  used, spins cannot always be entered a t  any given a l t i t u d e  

c 2 P  c2P 
on a l l  configurations. 

CONCLUSIONS 

The following conclusions a r e  drawn from the  present ana ly t ica l  study on 
t h e  e f f e c t s  of a i rplane r e l a t i v e  density on spin and recovery charac te r i s t ics  
of four  configurations representat ive of modern airplanes.  

1. Trends obtained as t o  t h e  e f f e c t  of changing r e l a t i v e  densi ty  on 
developed spins and recoveries were generally s i m i l a r  t o  those noted i n  e a r l i e r  
experimental free-spinning tunnel model t e s t s  made f o r  a i rplanes w i t h  unswept 
wings and a much smaller r e l a t i v e  density range, and were as follows: An 
increase i n  r e l a t i v e  densi ty  gave f a s t e r  ro ta t ing  spins, higher r a t e s  of descent, 
lower values of t h e  spin coeff ic ient ,  l i t t l e  change i n  angle of a t tack  and side- 
s l i p ,  and recoveries, i f  obtained, were slower. 

2. Changes i n  r e l a t i v e  densi ty  can make t h e  difference between a spin and 
a no-spin when entry i s  attempted by means of a l g  s ta l l  maneuver, but t h e  

11 
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e f fec t  of r e l a t i v e  densi ty  i s  not consis tent .  About t h e  only general izat ion 
t h a t  can be made on t h e  e f f ec t  of r e l a t i v e  densi ty  on the  sp in  en t ry  i s  t h a t  
increases  i n  r e l a t i v e  densi ty  cause increased roll o s c i l l a t i o n s  during t h e  spin- 
en t ry  motions. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, Va., June 3, 1964. 
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APPENDIX 

EQUATIONS OF MOTION AND ASSOCIATED FORMULAS 

The equations of motion used i n  the calculat ions were: 

PVR2' 
d = -g s i n  8,  + v r  - wq + - 

i = g cos 0,  s i n  + 

G = g COS 0, COS $e + 

I n  addition, t he  following formulas were used: 

-1 w a = t a n  U 

V = -u s i n  



lIlllll1l1ll11l1l Ill I I I I 

. r cos jd, + q s i n  6, 
cos e, $e = __ 

Turns i n  spin = 
25r 

1 s i n  16 fie = sin-  
COS 8 ,  

14 
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36.17 10.27 11.83 
22.36 35.67 56.89 
200.00 385.33 1,542.53 
15,792 23,771 71,800 
5,391 11,709 290,000 

92,249 82,654 747,000 

94,112 89,237 965,000 

-30.0 -30.0 -20.0 
f7.5 k6.0 530.0 
27.5 f15.0 k15.0 

-. . - .- - F 

TABLE I.- MASS AND DIMENSIONAL CHARACTERISTICS 

Parameter 

C,ft . . . . . . . . . . . . . . . . .  
b, f t . .  . . . . . . . . . . . . . . .  
s, sqft . . . . . . . . . . . . . . .  
Ix, slug-ft2 . . . . . . . . . . . . .  
Iy, slug-ft2 . . . . . . . . . . . . .  

W, l b . .  . . . . . . . . . . . . . . .  

2 Iz, slug-ft . . . . . . . . . . . . .  
Maximum control deflections: 
6,, deg.. . . . . . . . . . . . . .  
Er, deg.. . . . . . . . . . . . . .  
6,, deg.. . . . . . . . . . . . . .  

._ ~ 

._ . _I 
D I  

..-J 

23 755 
38.120 
695 - 050 
24,811 
13,600 
128, ooo 
138, ooo 

-25.0 
f25.0 
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73 85 -5 15 172 
123 85 -5 22 250 
273 85 -5 27 309 
487 85 -5 39 442 

173 
251 
310 
444 

36 85 -5 18 208 209 
60 85 -5 24 270 271 
116 85 -5 33 374 376 
233 85 -5 47 536 538 

0.218 2.490 
2.490 
2.490 
2.490 

73 25 
123 25 
273 25 
487 25 

25 
25 
25 
25 

208 
269 
374 
535 

Configuration B 

431 
587 
776 

1, llo 

36 
60 
116 
238 

10 10 
10 10 
10 10 
10 10 

17 20 
28 20 
55 20 
113 20 

0 
0 
0 
0 

19 18 
33 18 
63 18 

129 18 

18 
18 
l a  
18 

TABLE 11.- INITIAL CONDITIONS USED I N  CALCULATIONS 

(a)  Simulated launch with rotation; p = $e = $e = v = q = 0 

Altitude, 
f t  

P, 
rdians/sec mdians/sec 

0.157 * 157 1 Ai 1.793 1.793 

-157 1.793 
.157 1.793 

15, ooo 
30, ooo 
45 , 000 
60, ooo 

Configuration B 

15, ooo 
30, ooo 
45, coo 
60, ooo 

Configuration C 

15, ooo 
30, ooo 
45,000 
60, ooo 

0.131 1.494 

1.494 
1.494 

1.494 

0.131 1.494 
.131 1.494 . i31 1.494 
.131 1.494 

Configuration D 

15, ooo 
30, ooo 
45, 
60, ooo 

(b )  Simulated spin entry; p = $e = $e = v = p = r = 0 

Altitude, 
f t  

w, 
f t / s ec  

15 , ooo 
30, ooo 
45,000 
60, ooo 

97 
126 
174 
24 9 1 230 

297 
412 
590 

0 O I  
15, ooo 
30, ooo 
45,000 
60 , 000 

76 
104 
137 
196 

15 , ooo 
30, ooo 
45 , 000 
60,000 

263 
341 
4 74 
678 

Configuration D 

0 
0 "1 255 

331 
459 
657 

15 , ooo 
30,000 

60, ooo 
45,000 

79 
102 
141 
203 

243 
315 
437 
625 
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I n i t i a l  
a l t i t ude ,  

ho, ft 

TABLE 111.- SOME PERTINENT RESULTS OBTAINED WBEN CONFIGURATIONS 

Initial 
cL a, deg 

WEBE LAUNCHED INTO A NEAR-SPIN CONDITION 

[b values taken after approximately 10 t u rns  except where noted] 

1 t o  -8 2.8 

3 t o  -8 2.9 
1 t o  -6 3 - 0  

I I 

181 

230 
302 

0 t o  -4 

. .  

I I 

3.1 418 

15, ooo 

30, ooo 
45,000 

60, ooo 

15,000 
30, ooo 
45,000 
60, ooo 

15, ooo 
30, ooo 
45,000 116 
60, ooo 238 

19 
33 
63 

129 

I 

75 
75 t o  78 
76 t o  80 

30, ooo 
45,000 
60, ooo 

-2 
-2 

-1 t o  -2 

I 

I 

I 

84 t o  89 

84 t o  90 
85 t o  88 

85 t o  88 

70 t o  80 
73 t o  81 
74 t o  82 
77 to 82 

70 t o  go 

70 t o  88 
75 t o  85 
75 t o  85 

Configuration B 

4 t o  -7 
3 t o  -6 
4 t o  -7 
3 t o  -5 

2.1 
2.3 
2.6 
2.8 

Configuration C 

5 t o  -12 

5 t o  -10 
5 t o  -10 
5 t o  -10 

1.6 

1.7 
1.7 
1.8 

Conf igna t ion  D 

1.3 
1.5 
1.6 

202 
254 
329 
449 

202 

243 
319 
431 

172 
219 
277 
372 

0.17 

.14 

.11 

-09 

0.20 
-17 
.14 
.12 

0.22 

17 
15 

.12 

0.13 
.12 
.10 
.d3 

No 
recovery 

No 
recovery 

No 
recovery 

-------- 
9 ( 4  

None 
None 

(9b) 

lo(  a: 
None 
None 
10(b: 

- 

U( a)  

None 
None 
W b  1 

. .  

None 
None 

1 
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Figure 1.- Body system of  axes and r e l a t e d  angles .  Arrows i n d i c a t e  p o s i t i v e  d i r e c t i o n s .  
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Configuration C Conf igurat Ion D 

Figure 2.- Planview of four configurations studied. 
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Figure 10.- Calculation simulating launching with rotary motion. Configuration B; 6, = -JOO. 
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